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New derivations of Darwin’s theorem 
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The University of Michigan, Ann Arbor, Michigan 

(Received 1 May 1984) 

Two new derivations of Darwin’s theorem on the equality of the added mass for 
translation of a body moving in an ideal fluid of infinite extent and the drift mass 
are given. The first is based on the idea of time lag, used by Rayleigh (1876), Ursell 
(1953), and Longuet-Higgins (1953) to study fluid drift. The second is truly 
elementary, relying only on the concept of continuity and Newton’s second law of 
motion. A geometrical interpretation of the result in the first derivation is given, and 
a few examples are provided. 

1. Introduction 
Darwin’s theorem (Darwin 1953) shows the equality of the added mass of a body 

in translation in an ideal fluid and the mass of the drift volume of the fluid at a section, 
as the body moves with constant velocity from the far right of the section to its far 
left. It is a beautiful theorem, for what it revealed was thitherto entirely unexpected 
and even today whoever encounters it for the first time still experiences the surprise 
and delight it affords. 

In  this paper two new derivations of Darwin’s theorem are given. The first is based 
on the idea of time lag in steady irrotational flows, which allows Darwin’s theorem 
to be obtained with simplicity and directness. At first I thought this idea was new, 
but it was pointed out to me that the idea originated with Lord Rayleigh (1876), who 
used it to study fluid drift in waves in a geometric way, but whose arguments (where 
he assumed two parallel streamlines near the bottom) are valid only for deep-water 
waves, as pointed out by Ursell (1953). It was Ursell (1953, p. 147) who first put 
Rayleigh’s idea in analytical terms. Indeed (12) and (13) in this paper are quite 
reminiscent of Ursell’s work. The idea of time lag was also used by Longuet-Higgins 
(1953) to steady fluid drift in space-periodic and solitary waves. However, neither 
Ursell nor Longuet-Higgins was concerned with Darwin’s theorem, whereas this 
paper is. 

The idea of time lag has also been quite explicitly used by Lighthill (1956). See, 
for instance, equation (46) on p. 42 of his article, which treated weak shear flows. 

We shall derive Darwin’s theorem for two-dimensional flows first. Then a geo- 
metrical interpretation will be given to the result obtained and a few examples 
provided. For the sake of completeness as well as to illustrate the usefulness of general 
stream functions, we shall derive Darwin’s theorem for three-dimensional flows. 
Finally, an elementary proof of Darwin’s theorem based on the concept of continuity 
and on Newton’s second law will be given, without the explicit use of integral calculus, 
as well as an alternative form of Taylor’s theorem (1928). 
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FIGURE 1. Sketch for the areas B,, B,, and A .  

2. The two-dimensional case 
of the irrotational 

flow caused by a body moving in an ideal fluid otherwise at rest are expressed in 
coordinates of a frame moving with the body. The velocity components in the 
directions of increasing x and y are, respectively, 

(1) 

As usual, the velocity potential 4’ and the stream function 

uf = $1  = f ,  = $’ Y = - @ I  X *  

where subscripts indicate partial differentiation. The speed q’ is defined by 

4 ’2  = u’2 + v’2. (2) 

Let the body move to the left (in the direction of decreasing x) with constant 
speed 1. Then the flow is steady with respect to the moving frame, and the velocity 
potential 4 and the stream function $ are given by 

4 = x+&, $h = y i - ~ ! .  (3) 

u = 4 x = @ Y = 1 + u ’ ,  v = $  Y = - ~  X = v ’  (4) 

( 5 )  

The velocity components are 

and the speed q is given by q 2  = u2 + vz. 
As is well known, the added mass of the body is given by 

where p is the density of the fluid and the integral is over the (infinite) area outside 
the body. Now consider the integral 

r r  

I = p  JJ [(u-1)2+v2]dxdy, 
D 

(7) 

where D is a domain (figure 1) bounded by two streamlines @ = @B and + = ~ - B ,  

one above the body and the other below it. As these streamlines recede to infinity 
above and below, respectively, I approaches ma. 

Now, since 
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we have - I = JJ(l-q2)dxdy-2 JJ(u-q2)dxdy 

P 

= JJ($-l)dq5d$-2 JJ(:-l)dq5d$ = 11-212, (9) 

where all integrations are over D, and I, and I, are defined by the last equality sign. 
But 

u ax 
q 2 - q '  
_ -  

since q5' = 0 at infinity for a body moving in infinite fluid. Therefore 

I = PIl. (11) 

_-  " - ds, 
q 

where ds is the distance along a streamline as q5 changes by dq5. Thus 

dq5 
9, 
- = dt, 

where dt is the time required for a fluid particle to travel the distance ds. The integral 

is then the difference between the time required by a fluid particle to go from q5 = - 00 

to $ = + 00 and the time required by a reference kinematic point moving with 
constant u (= 1) to do the same. That is, i t  is the drift distance for a particle moving 
along any particular streamline in the steady flow (q5, $). (If the particle requires more 
time, and eventually its velocity is 1, the same as that of the reference point, it will 
never catch up, and will lag behind the reference point by the distance equal to 1 times 
I,. This distance is the drift distance.) Hence 11, being 

is the drift area (or drift volume per unit distance normal to the x,y plane). Then 
in the limit, as $ E +  00 and $d/-E+ - 00, 

ma = limpl,. (14) 

That is, the drift mass is the added mass, per unit distance along the generatrix of 
the cylinder, which is the body under consideration. Thus Darwin's theorem is proved 
in a new, simple way. 
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3. Geometrical significance of the integral I ,  
Considering I, again, we see that 

I ,  = D-S,  
where 

D = area of domain D = 

S =  d$d$. ss 
Obviously S is the area of the infinite 
cross-sectional area A of the body. Thus 

strip of width $ B - $ - B ,  including the 

D-S = B,+B,-A,  (16) 

where B, is the area bounded by the streamline $ = $B above and y = $B below, 
and B, is the area bounded by $ = $-B below and y = $-B above. The bounding 
lines do not cross if $B and -$.-B are sufficiently large. Let 

B = B, + B,. 

Then in the limit, as t,hB-+ 00 and $-B+ - 00, 

pB = m,+m, 

where m is the mass of the fluid displaced by the body. 
We do not have to go to the limit, however. From (16) we obtain that 

pB = md+m, (18) 

where md is the drift mass between the streamlines $ = $B and $ = $-B. It is this 
generalization and the geometric relation (16) that lead us to the results presented 
in the section below. 

4. Examples of fluid drift 
Consider the classical solitary wave, the solution for which was first given by 

Rayleigh (1914) and refined by subsequent authors. No exact solution exists. But the 
result given below is exact, not depending on the'particulars of the solution. 

Take the steady-flow solution (4, $) for the solitary wave, and take 

$-B = 0 

and $B to be the $ on the free-streamline. The velocity scale is the speed c of the 
solitary wave. Upon use of this scale, everything developed in $52 and 3 stands. In 
this case A = 0 exactly, because there is no solid body in the fluid, and B, = 0, because 
$ = 0 and y = 0 coincide. Hence upon dividing (18) by p. we have 

B = B  =-, md 
1 

P 
or the drift area is exactly equal to the area between the free surface and its horizontal 
asymptote, which is Ursell's result (1953), obtainable also by the consideration of 
continuity. 

Internal solitary waves in two superposed fluid layers have been studied by 
Keulegan (1953), Long (1956), and Benjamin (1966). The wave may be one of 
elevation of the lower fluid (Case A), or one of depression of the lower fluid (Case B). 
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Upon application of (18), with m = 0, to the lower fluid in Case A, we see that again 
the drift area for the lower fluid is exactly equal to the area underneath the interface 
and above its horizontal asymptote. For the upper fluid the drift area is of exactly 
the same magnitude, but in the opposite direction (opposite to the direction of pro- 
pagation of the solitary wave). The total drift area is then exactly zero. For Case B, 
the opposite is true. That is, the upper fluid drifts with the wave, and the lower 
fluid drifts in the opposite direction, the drift area for each layer being exactly equal 
to the area between the interface and its horizontal asymptote. 

Obviously these results can be generalized to apply to solitary waves in a fluid 
system of many layers. But I shall refrain from doing so. Instead, I shall give some 
other examples. 

Consider a circular cylinder of radius a moving with unit velocity to the left along 
the x-axis. As is well known, the stream function is given by 

the origin of Cartesian coordinates x and y being at the centre of the cylinder. Area 

B, is given by W Q, 

Bl = J-, (Y-$B) dx = J-Q, 22+y2 dx, (20) 

in which y is a function of eB and x, obtained by letting the $ in (19) be $B. As $B 

increases indefinitely, we can replace the y in the second integral of (20) by $B, 

committing thereby less and less error as $B increases, and ultimately no error at 
all. Doing so, we obtain from (20) that 

B, = xu2. 
Similarly B, = nu2, so that 

pB = /3(B, + B,) = 2p7ca2. 

Since m, the mass of the fluid displaced by the body, is pna2, it follows from (17) that 
the added mass is 

ma = pna2. 

By letting $B+ 00 and $-B+- - 00, we obtain from (18) the same value for the total 
drift mass md, as expected. 

Another example is provided by the stream function 

where the flow in the x‘, y’ plane is the flow past a circular cylinder. If the coordinates 
(2, y) and (XI, y’) are related by 

bay’ b2xf y = yf-- 
X’,+Yf2 ’ x = x’+- 

X’ + Y’ ’ 

we have the well-known result that the flow in the x, y plane is that past an elliptic 
cylinder with semi-major axis a+b2/a and semi-minor axis a-b2/a.  We have then 

(a2-b2)yf 
Y-$=  x‘,+Y‘2 * 

If we replace yf by gB and x’ by x, and integrate with respect to x, in the limit, a8 
$B tends to 00, we obtain without error 

B, = J-Q, (y-$)dx = (a2-b2)n. 
W 
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Similarly B, has the same value, and 

But 

Hence ma = ma = p x  a-- , ( 3 
as is well known. 

Note that Darwin proved this theorem (as I do here also) only for a fluid of infinite 
extent. It can be generalized to apply to a semi-infinite fluid bounded by a single plate 
to which the velocity of the immersed body is parallel. But i t  is not true for a restricted 
fluid, such as the fluid between two parallel plates, in which a body moves. In  such 
cases the I, in (10) is not zero, and therefore Darwin’s theorem does not hold, because 
9‘ is not zero at  infinity, as Ursell(l953) pointed out in the case of the solitary wave, 
and as can be shown easily in the case of the fluid bounded by two parallel plates. 
For such a case (9) needs to be carefully re-examined, for there is a subtle point 
involving the interpretation of the integral S in (15), which no longer represents the 
area of the infinite strip including the area A, as stated after (15), but contains an 
additional part that can be easily shown to be - I , .  Then, since B vanishes in this 
case, (9) becomes, upon use of (15), 

I = -PA-PI,,  or - P I ,  = m,+pA, 

as can be shown independently by using a control volume and applying Newton’s 
second law and Bernoulli’s theorem (for unsteady flows with the body moving and 
the fluid at rest at  infinity). 

5. The three-dimensional case 
We shall now return to a new proof of Darwin’s theorem for three-dimensional 

flows, based on the idea of time lag. This proof has some incidental merit in 
demonstrating the usefulness of stream functions for three-dimensional flows (Yih 
1957, 1979). Let these be denoted by $ and x. Then the velocity u is given by 

Thus 
u = grad $ x grad x. 

in which u, v, and w are the velocity components in the directions of increasing x, 
y, and z, respectively, with the velocity at infinity being 

u=l, v = o ,  w = o .  

We shall not assume any axial symmetry. But i t  is still useful to define 
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Since the body is assumed to move with speed 1 (in the direction of decreasing z), 
the added mass is, as is well known, 

q’ being the speed of the fluid for the (unsteady) flow caused by the body in the fluid 
otherwise at  rest. The integral in (26)  is carried over the entire space occupied by 
the fluid. We now take D to be the domain between $ = 0 and @ = $,, = &:, from 
z = - 00 to z = + 00, and consider the integral 

Then the development is exactly as that following (7), and we obtain 

= 4 - 2 4 ,  (27) 

where I ,  and I ,  are defined by the last equality sign, and all integrations are over 
the domain D. Again, for an unrestricted fluid, 

and we have 
I 

P 
- = I , .  

In the limit, PI ,  = ma. 

But, as before, I ,  is the drift volume. Hence we have given a new proof of Darwin’s 
theorem for three-dimensional flows using the idea of time lag. 

6. A proof of Darwin’s theorem without calculation 

flows (the formula for two-dimensional flows then follows directly) is given by 
Darwin showed in his paper (1953) that the drift volume V, for three-dimensional 

VD = - JJJ 4; dz dy dz, (28) 

where the integration is carried over the entire fluid domain, and where the sign 
convention of (1) regarding # has been adopted. I have used a minus sign in (28) to 
make VD positive, since in this paper the body is assumed to move toward the left 
(i.e. in the direction of decreasing 2). It is evident that the integral is the total 
momentum of the fluid divided by p, and, if the body is moving with unit velocity 
to the left, the right-hand side of (28), with the minus sign included, is obviously the 
added mass divided by p,  upon consideration of acceleration of the body. So the drift 
mass is the added mass, and this fact is the substance of Darwin’s theorem. 

Darwin’s theorem is not only true; it is beautiful as well. Part of the reason for the 
delight it gives is its unexpectedness. And yet one could wonder whether i t  is a 
fortuitous truth stating a fortuitous equality, or whether the equality it states is 
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dictated by kinematics and dynamics in so simple and direct a way that it is obvious. 
Evidently if the latter is true it has hitherto not been recognized, for Darwin’s 
theorem is widely regarded as difficult to grasp, and its unexpectedness (for this 
writer a t  least) seems to indicate that the equality of drift mass and added mass is 
fortuitous. But then how could such a general equality, regardless of shape of the 
body, be only fortuitously true? One could argue, of course, that any truth 
demonstrated mathematically is not fortuitous, that it has mathematical necessity. 
Yet mathematical necessity is not mechanical necessity, and, upon learning of 
Darwin’s theorem, one is always left wondering why it must be true mechanically. 

I shall now show, without the explicit use of integral calculus, that Darwin’s 
theorem is to be expected on the basis of continuity and Newton’s second law. 

Consider the domain D shown in figure 1,  bounded by two streamlines (or a stream 
surface if the flow is three-dimensional) and the body. For convenience, and 
convenience only, I shall treat the flow as two-dimensional. But every statement that 
follows can be made applicable to three-dimensional flows by the change of a word 
here and there (e.g. the word ‘area’ to ‘volume’). The geometry of D will be called 
the ‘pattern’. The pattern moves with the body, though the fluid at infinity is at  
rest. 

Now, at x = 0 and t = 0, let the intersection of D with the y-axis (or the y, z plane 
in three-dimensional flows) be dyed blue, and let the streamlines shown in figure 1 
be dyed red at t = 0. Furthermore, let the body move left from x = co. After the body 
has moved to the far left, the blue line will have drifted left, and the drift area is 
the area swept by the blue line from its initial position to its final position. The red 
lines (but not the particles on them) move with the body and are made of the same 
fluid particles. 

Consider the fluid mass to the left of the blue line and bounded by the red lines 
and the body. There is no flow across either the blue lines or the red lines since they 
are material lines, and there is no flow at x = - 00. The fluid area just described must 
then be constant and equal to the area initially to the left of the blue line (and 
bounded by the red lines), when the body was at  2 = 00. Thus? 

B - A  = C ,  (29) 
where B = B, + B,, and Cis the drift area between the red lines. (Recall the definitions 
of B,, B,, and A . )  

Now consider the domain D at any time. As the body moves left, the centre of 
gravity of D moves also. There is no flow at infinity and the ‘pattern’ moves with 
the body, so that the area B and the area A (occupied by the body, which is a fluid 
hole) move with the body. Hence the amount of fluid moving with the same mean 
2-velocity as the body is p ( B - A )  = pC, which then must be the added mass, as 
the time-rate of change of the momentum of the fluid in D is equal to the force 
imparted it by the body when it accelerates, if the x-component of the force from 
integrating the pressure on the red lines is ignoredl as i t  can be ignored when the 
red lines recede to y = f 00. Thus the drift mass must be equal to the added mass 
upon consideration of continuity and Newton’s second law, and Darwin’s theorem 
can be expected on these principles. 

It is regrettable that we can no longer ask Sir Charles what inspiration led him to 
his discovery. I think it was unlikely that the considerations I have just presented 

t The same arguments can be applied to viscous fluids to obtain the same result, which can also 
be otherwise established. 

$ The force arising from pressure at the ends of D (where z = co) is zero. 
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went through his mind. These considerations are mere hindsights, and his theorem 
stands as an interesting example of the essential inexplicability and intractability of 
inspiration of the human mind. However, my attempts here perhaps serve to make his 
theorem more graspable and therefore more satisfying to his readers. 

7. Connection between Darwin’s theorem and Taylor’s theorem 
Equation (17) is in effect Taylor’s theorem (1928). To save space, I shall consider 

only two-dimensional flows here. The three-dimensional counterpart of the develop- 
ment can be established without difficulty. 

It is clear that 
al 03 

B = B 1 + 4  = LQ) (YI-$B)dx+J -m ($-~-Yz)dx, (30) 

where y1 is y on the streamline $ = +B and y2 is y on $ = +-B,  the B’s being defined 
in 93. Equation (30) can be written as 

AS $ B + - ~  and $ - B + - ~ ,  we obtain from (17) and (31) 
m 

~ d z +  lim J = m+m,. 
y+-m -m 

By taking an infinite strip bounded externally by 

$ = $ B  and $ = $ - B  (33) 

and internally by the surface of the body, we can obtain (see Appendix) 

al 

$’dy]=m+m,. (34) 

The left-hand side of (32) and (34) are an altkrnative expression of Taylor’s expression 
obtained from the singularities inside the body. On the other hand (32) is (17), (34) 
is an alternative form of (17), and (17) is closely related to the proof of Darwin’s 
theorem. Thus, although Darwin was thinking of drift mass and Taylor was not, the 
grounds they traversed, a quarter of a century apart, were not far from each other. 

This work has been supported by the Fluid Mechanics Program of the Office of 
Naval Research. 

Appendix 

by the body internally. Then 
To show (34), consider the domain D’ bounded by the curves (33) externally and 

The first integral on the right-hand side is the (infinite) area of D’, the second integral 
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is the area of the infinite strip bounded by (33), including the body of Area A. Hence 
their difference is -A, and upon multiplication by p,  and recalling that m = pA and 
I+ma as q5B+ co and $-B+ - co, we have, in the limit, (34), since 4' = 4 - x .  
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